Methodology for Managing the Effect of Uncertainty in Simulation-Based Design

Xiaoping Du and Wei Chen

University of Illinois at Chicago, Chicago, Illinois 60607-7022

Simulation-based design has become an inherent part of multidisciplinary design as simulation tools provide designers with a flexible and computationally efficient means to explore the interrelationships among various disciplines. Complications arise when the simulation programs may have deviations associated with input parameters (external uncertainties), as well as internal uncertainties due to the inaccuracies of the simulation tools or system models. These uncertainties will have a great influence on design negotiations between various disciplines and may force designers to make conservative decisions. An integrated methodology for propagating and mitigating the effect of uncertainties is proposed. Two approaches, namely, the extreme condition approach and the statistical approach, are developed to propagate the effect of uncertainties across a design system comprising interrelated subsystem analyses. Using the extreme condition approach, an interval of the output from a chain of simulations is obtained, whereas the statistical approach provides statistical estimates of the output. An uncertainty mitigation strategy based on the principles of robust design is proposed. The methodology is presented using an illustrative simulation chain and is verified using the case study of a six-link function-generator linkage design.

Nomenclature

\(a \) = vector of system objective
\(f \) = vector of simulation function
\(g \) = vector of system constraint
\(S \) = displacement of slider
\(w \) = weighting factor
\(x \) = vector of design variable
\(\bar{x} \) = vector of nominal value of \(x \)
\(y \) = vector of linking variable
\(z \) = vector of system output
\(\alpha \) = maximum pressure angle
\(\Delta x \) = vector of range of \(x \)
\(\varepsilon \) = vector of error model
\(\theta \) = vector of mean value
\(\sigma \) = vector of standard deviation
\(\varphi \) = crank angle
\(\psi \) = rocker angle

I. Introduction

The advancements in computer-aided engineering (CAE) have resulted in the development of simulation tools that model the behavior of real-world systems. These tools provide designers with flexible and inexpensive means to deal with complicated systems analysis and design under a multidisciplinary collaborative environment. Multidisciplinary systems design\(^1,2\) usually involves interactions of various systems (called subsystems in this paper) connected by linking variables. These subsystems may be designed by different disciplines. Even though multidisciplinary optimization (MDO) has gained wide attention and applications, the treatment of uncertainties under multidisciplinary design has received very limited attention.\(^3\) It is our aim to develop an integrated methodology for propagating and managing the effect of uncertainties in a simulation-based (multidisciplinary) systems design environment. In addition to discussing the various sources of uncertainties involved in simulation-based design, our focus is to illustrate the alternative techniques for propagating the effect of uncertainties across a design system comprising interrelated subsystem analyses, as well as to show the benefits of applying the robust design technique to making reliable design decisions under uncertainties.

It is generally recognized that there always exist uncertainties in any engineering systems due to variations in design conditions and mathematical models.\(^4\) Omitting the algorithmic errors related to computer implementation, two general sources contribute to the uncertainties in simulation predictions.

1) External uncertainty comes from the variability in model prediction arising from plausible alternatives for input values (including both design parameters and design variables).\(^5,6\) It is also called input parameter uncertainty. Examples include the variabilities associated with loading, material properties, physical dimensions of parts, and operating conditions.

2) Internal uncertainty has two sources.\(^7,8\) One is due to the limited information in estimating the characteristics of model parameters for a given, fixed model structure, which is called model parameter uncertainty, and another type is in the model structure itself, including uncertainty in the validity of the assumptions underlying the model, referred to as model structure uncertainty.

A critical issue in simulation-based systems design is that the effect of the uncertainties of one subsystem (or discipline) may propagate to another through linking variables, and the final system output will have an accumulated effect of the individual uncertainties. A practical problem in large-scale systems design is that multidisciplinary groups often use predictive tools of varying accuracy to determine if the design options are meeting the design requirements and to perform impact analyses of proposed changes from other groups. Some of these tools have good accuracy relative to test data, for example, mechanical structural analysis. Others may have very low accuracy for engineering purposes, for example, fatigue modeling. It is important to study the effect of various uncertainties as a part of requirements tracking and design coordination. Two primary issues arise: How should the effect of uncertainties be propagated across the subsystems? How should we manage (mitigate) the effect of uncertainties and make reliable decisions?

Techniques for uncertainty analysis exist widely in the literature. The extreme condition approach (or worst-case analysis) and the statistical approach are the two commonly used approaches. The common extreme condition approach is to derive the range of system output in terms of the range of uncertainties by either suboptimizations\(^9\) or first-order Taylor expansion, or interval analysis.\(^10\) The statistical approach relies heavily on the use of data sampling to generate cumulative distribution function (CDF) of
In this section, a simulation-based design model as shown in Fig. 1 is used to explain the proposed methodology. The use of extreme condition approach and the statistical approach has been restricted to propagating the effect of external uncertainty but not that of the internal uncertainty, much less the combination of both. In recent developments, some preliminary results of propagating the effect of model uncertainty (internal uncertainty) are reported. \(^8\) In the work of Gu et al., \(^9\) model uncertainty is denoted by a range (bias) of the system output. With this simplistic treatment, the worst-case concept and the first-order sensitivity analysis are used to evaluate the deviations of an end performance. There is a need to accommodate more generic representations of both external and internal uncertainties. In the context of optimization, the physical programming method \(^10\) also uses ranges to express performance preference for each objective. This approach may also entail inherent robustness properties.

There are few works associated with how to mitigate the effect of both the external and internal uncertainties in simulation-based design. Whereas in the past a lot of effort was spent on reducing the magnitude of variation sources, recent development in design techniques has generated methods that can reduce the impact of potential variations by manipulating controllable design variables. Taguchi’s robust design is such an approach and emphasizes reduction of performance variation through reducing sensitivity to sources of variation. \(^16\) A part of the authors’ work \(^20,21\) has been on developing nonlinear programming methods that can be used for a variety of robust design applications, as well as overcoming the mathematical limitations of the methods Taguchi offered. \(^18\) Robust design has also been used at the system level to reduce the performance variation caused by manufacturing deviations. \(^22\) In this work, the concept of robust design is used to mitigate performance variations due to various sources of uncertainties in simulation-based design. An integrated methodology for propagating and managing the effect of uncertainties is proposed. Two approaches, namely, the extreme condition approach and the statistical approach, are developed to propagate the effect of both the external uncertainty and the internal uncertainty across a design system comprising interrelated subsystem analyses. An uncertainty mitigation strategy based on the principles of robust design is proposed. A simplistic simulation chain model is used to explain the proposed methodology and a six-link function-generator linkage design problem is used to illustrate the benefit of applying the robust design approach for uncertainty mitigation. The principles of the proposed methods can be easily extended to more complicated, real multidisciplinary design problems.

II. Propagation of the Effect of Uncertainties

In this section, a simulation-based design model as shown in Fig. 1 is used to explain the proposed methodology. The model consists of a chain of two simulation programs (imaging they are from two different disciplines) that are connected to each other through linking variables represented by the vector. The input to simulation model \(I\) is the vector of design variables \(x_i\) with uncertainty (external uncertainties, described by a range \(\Delta x_i\), or certain distributions). For simulation model \(I\), the output \(y\) can be expressed as

\[
y = F_1(x_i) + \varepsilon_1(x_i)
\]

where \(F_1(x_i)\) is the simulation model and \(\varepsilon_1(x_i)\) is the corresponding error model of the internal uncertainty. Additive error model is used to represent model structure uncertainty in this study, though its real form can be much more complicated.

For simulation model \(II\), the inputs are the linking variable \(y\) and the design variable \(x_2\). The output vector \(z\) can be expressed as

\[
z = F_2(x_2, y) + \varepsilon_2(x_2, y)
\]

where \(F_2(x_2, y)\) is the simulation model and \(\varepsilon_2(x_2, y)\) is the corresponding error model. The output \(z\) often represents system performance parameters that are used to model the design objectives and constraints. Because of the deviations existing in \(x_2\) and \(y\), and the internal uncertainty \(\varepsilon_2(x_2, y)\), the final output \(z\) will also have deviations.

The question is how to propagate the effect of various types of uncertainties across a simulation chain with interrelated simulation programs. Two approaches, the extreme condition approach and the statistical approach, are presented in the following sections.

A. Extreme Condition Approach for Uncertainty Analysis

The extreme condition approach is developed to obtain an interval or the extremes of the final output from a chain of simulation models. The term extreme is defined as the minimum or the maximum value of the end performance (final output) corresponding to the given ranges of internal and external uncertainties. With this approach, the external uncertainties are characterized by the intervals \([x_1 - \Delta x_1, x_1 + \Delta x_1]\) and \([x_2 - \Delta x_2, x_2 + \Delta x_2]\), where \(x_1\) and \(x_2\) are the nominal values of \(x_1\) and \(x_2\), respectively. Correspondingly, the outputs of the two simulation models are described by the intervals \([y^{\text{min}}, y^{\text{max}}]\) and \([z^{\text{min}}, z^{\text{max}}]\), respectively.

Optimizations are used to find the maximum and minimum (extremes) of the outputs from simulation model \(I\) and simulation model \(II\). The flow chart of the proposed procedure is given in Fig. 2. The steps to obtain the range of output \(z\), \([z^{\text{min}}, z^{\text{max}}]\), are presented as follows:

1. A set of nominal values \(\bar{x}_i\) and \(\bar{y}\), and ranges \(\Delta x_i\) and \(\Delta y\) are given.

2. For simulation model \(I\), minimize and maximize \(F_1(x_i)\) over the range of \([x_i - \Delta x_i, x_i + \Delta x_i]\) to obtain \(F_1^{\text{min}}(x_i)\) and \(F_1^{\text{max}}(x_i)\). (Note that, though vector representation is used for simplicity, the objective functions in optimization are scalar valued.)

 The optimization model is

 Given: The nominal value of \(\bar{x}_i\) and the range \(\Delta x_i\)

 Subject to: \(x_i - \Delta x_i \leq x_i \leq x_i + \Delta x_i\)

 Optimize: Minimize \(F_1(x_i)\) to obtain \(F_1^{\text{min}}(x_i)\)

 Maximize \(F_1(x_i)\) to obtain \(F_1^{\text{max}}(x_i)\)

3. Similar to step 2, obtain the extreme values of internal uncertainty \(\varepsilon_1^{\text{min}}(x_i)\) and \(\varepsilon_1^{\text{max}}(x_i)\) over the range of \([x_i - \Delta x_i, x_i + \Delta x_i]\)

 \[z^{\text{min}} = F_2(x_2, y^{\text{min}}) + \varepsilon_2(x_2, y^{\text{min}})\]

 \[z^{\text{max}} = F_2(x_2, y^{\text{max}}) + \varepsilon_2(x_2, y^{\text{max}})\]

\[\begin{align*}
\text{Given} & \quad \text{Range} [x_{\text{max}}, x_{\text{min}}] \\
\text{and} & \quad [y_{\text{max}}, y_{\text{min}}] \\
\text{Minimize} \ y & \quad \text{over} \ [x_{\text{max}}, x_{\text{min}}] \\
\text{to obtain} & \quad y^{\text{min}} \\
\text{Maximize} \ y & \quad \text{over} \ [y_{\text{max}}, y_{\text{min}}] \\
\text{to obtain} & \quad y^{\text{max}} \\
\text{Minimize} \ z & \quad \text{over} \ [x_{\text{max}}, x_{\text{min}}] \\
\text{and} & \quad [y^{\text{min}}, y^{\text{max}}] \\
\text{to obtain} & \quad z^{\text{min}} \\
\text{Maximize} \ z & \quad \text{over} \ [x_{\text{max}}, x_{\text{min}}] \\
\text{and} & \quad [y^{\text{min}}, y^{\text{max}}] \\
\text{to obtain} & \quad z^{\text{max}}
\end{align*}\]

Fig. 1 Simulation model chain.

Fig. 2 Extreme condition approach procedure.
III. Mitigating the Effect of Uncertainty

To assist designers to make reliable design decisions under uncertainties, we integrate the proposed techniques of propagating the effect of uncertainties with the MDO approach based on the principles of robust design, that is, to extend the quality engineering concept to the mitigation of the effects of both external and internal uncertainties. From the viewpoint of robust design, the goal is to make the system (or product) least sensitive to the potential variations without eliminating the sources of uncertainty. The same concept is used here to reduce the impact of both external and internal uncertainties associated with the simulation programs. The robust optimization objective is achieved by simultaneously optimizing the mean performance and reducing the performance variation, subject to the constraints considering their deviations. Note that Taguchi’s robust design has been used in the past for mitigating the effect of parameter uncertainty which is similar to the external uncertainty considered here. In this work, the concept is extended to mitigate the effect of model structure uncertainty in a similar manner. For the extreme condition approach, the robust design model can be formulated as follows:

Given: Parameter and model uncertainties (ranges)
Find: Robust design decisions (\(x\))
Subject to: System constraints
\(g_{\text{unc}}(x) \leq 0\) (10)

Objectives: Optimize the mean of system attributes: \(\bar{a}(x)\)
Minimize the deviation of system attributes: \(\Delta a(x)\) (10a)

In this model, \(g_{\text{unc}}(x)\) is the maximum constraint function estimated by the worst case of constraint function \(g(x)\) and \(a\) is the objective vector. Both \(g(x)\) and \(a(x)\) are the subsets of system output vector \(z\). The mean and deviation of the system outputs can be obtained by the extreme condition approach as introduced earlier. Note that we have multiple objectives in robust design, that is, both the mean and the deviation of the system are expected to be minimized (here we assume optimizing the mean of a system attribute can always be transformed into a minimization problem). The general form of the objective can be expressed as

\[
\min[\bar{a}(x), \Delta a(x)]
\]
Many existing approaches can be used to solve the preceding multiobjective robust optimization problem. In the preceding model, we use the worst-case analysis to formulate the constraints [Eq. (10)]. The worst-case analysis assumes that all fluctuations may occur simultaneously in the worst possible combination. The effect of variations on a function is estimated using a first-order Taylor’s series as follows:

$$Dg(x) = \sum_i \frac{\partial g(x)}{\partial x_i} \Delta x_i$$ (12)

where $Dg(x)$ represents the variation transmitted to constraint $g(x)$ for a worst-case analysis. Then the design feasibility in Eq. (10) can be formulated by increasing the value of the mean $g(\bar{x})$ by the amount of functional variation $Dg(x)$, that is,

$$g_{\text{worst}}(x) = g(\bar{x}) + \sum_i \frac{\partial g(x)}{\partial x_i} \Delta x_i$$ (13)

When using the statistical approach to estimate the performance distribution, the robust model can be formulated as follows:

Given: Parameter and model uncertainties (distributions)
Find: Robust design decisions x
Subject to: System constraints $P[g(x) \leq 0] \geq P_{\text{limit}}$ (14)
Objectives: Optimize the mean of system attributes $a(x): \theta_a(x)$ (14a)
Minimize the standard deviation of system attributes $a(x): \sigma_a(x)$ (14b)

where $\theta_a(x)$ and $\sigma_a(x)$ are the estimates of mean and variance of the system outputs, respectively. Note that the constraints in the model are expressed by the probabilistic formulation. $P[g(x) \leq 0]$ is the probability of constraint satisfaction, and it should be bigger than or equal to the defined probability limit P_{limit}. Because it is very computationally expensive to evaluate the probability of constraint satisfaction, alternative formulations, for example, the moment matching method, are used in practice to evaluate the constraints.

With the moment matching method, if $g(x)$ is assumed to follow a normal distribution. The constraint in Eq. (14) is formulated as

$$\theta_a + k\sigma_a \leq 0$$ (15)

where k is a constant that stands for the probability of constraint satisfaction. For example, $k = 1$ stands for the probability $= 0.8413$ and $k = 2$ means the probability $= 0.9772$.

Figure 4 Integrated strategy for mitigating the effect of uncertainty.

Figure 5 Six-link function-generator linkage.
In terms of the inputs and outputs of the two simulation programs, for subsystem I, the inputs are \(\phi, x_1, \) and \(x_2, \) and the outputs are the angle \(\psi \) of rocker CD and the maximum pressure angle \(\alpha_1. \) For subsystem II, the inputs are \(\psi, x_1, \) and \(x_2, \) and the outputs are the displacement of slider \(S \) and the maximum pressure angle \(\alpha_2. \)

The analytical models to design the mechanism can be found in Refs. 31 and 32. Rather than using the analytical models directly, we create response surface models (RSMs) as the simulation models for these two subsystems and use them to design the mechanism based on the proposed methodology. The purpose of creating the RSMs in this study is not to improve the computational efficiency through approximations as they are normally used. Rather the purpose is to illustrate how to mitigate the effect of uncertainty when simplified models are used in design. The errors introduced by RSMs are considered explicitly as the uncertainty associated with the model structure. The benefits of the proposed method are illustrated by comparing the results from RSMs, both with and without the consideration of uncertainty, to those from using real analytical models.

For subsystem I, the RSMs created are \(\psi = f_\psi (\phi, x_1, x_2) \) and \(\alpha_1 = f_{\alpha_1}(x_1, x_2). \) These models are considered as the simulation models \(F_1(x_1) \) defined in Fig. 1:

\[
F_1(x_1) = F_1(x_1, x_2) = [f_\psi (\phi, x_1, x_2), f_{\alpha_1}(x_1, x_2)]
\] (17)

For subsystem II, the RSMs are \(S = f_s(\psi, x_1, x_2) \) and \(\alpha_2 = f_{\alpha_2}(x_3, x_4). \) These models are considered as the simulation models \(F_2(x_2, y) \) of:

\[
F_2(x_2, y) = F_2(x_3, x_4, y) = [f_s(\psi, x_3, x_4), f_{\alpha_2}(x_3, x_4)]
\] (18)

Different combinations of design variables \((x_1, x_2, x_3, x_4) \) and input angle \(\phi \) are selected for computer simulations using the analytical models. Based on the simulation results, a standard multilinear regression is used to fit second-order RSMs \(f_\psi (\phi, x_1, x_2), f_{\alpha_1}(x_1, x_2), f_s(\psi, x_3, x_4), \) and \(f_{\alpha_2}(x_3, x_4), \) in the following form:

\[
y = a_0 + \sum_{i=1}^{m} a_i x_i + \sum_{i=1}^{m} a_i x_i^2
\] (19)

where \(y \) is the approximate response, \(m \) is the number of input variables, and \(a_i \) and \(a_{i2} \) are regression coefficients.

The error models corresponding to the RSMs are \(e_\psi(x_1) = e_{\psi} (\phi, x_1, x_2), e_{\alpha_1}(x_1, x_2) \) and \(e_s(x_2, y) = e_s(\psi, x_3, x_4), e_{\alpha_2}(x_3, x_4). \) With the statistical approach, for simplicity, we assume all of the errors can be modeled using normal distributions. The mean values and standard deviations of the errors are denoted by \(\mu_\psi, \sigma_\psi, \mu_{\alpha_1}, \sigma_{\alpha_1}, \mu_{\alpha_2}, \sigma_{\alpha_2}, \) and \(\sigma_s, \) respectively, where \(\mu \) is mean value and \(\sigma \) is standard deviation. The PDF of the error models has the following form:

\[
PDF(e) = (1/\sqrt{2\pi}\sigma)\exp[-\frac{1}{2}(e - \mu)/\sigma^2]
\] (20)

The parameters \(\mu_\psi, \sigma_\psi, \mu_{\alpha_1}, \sigma_{\alpha_1}, \mu_{\alpha_2}, \sigma_{\alpha_2}, \) and \(\sigma_s \) are estimated using 100 samples of errors, which are evaluated by the differences between the values from the analytical models and those from RSMs. The samples are randomly picked over the range 30 \(\leq \phi \leq 60 \) deg.

The extreme condition approach, we specify the internal uncertainties as \(e_\psi \in [\mu_\psi - 3\sigma_\psi, \mu_\psi + 3\sigma_\psi], e_{\alpha_1} \in [\mu_{\alpha_1} - 3\sigma_{\alpha_1}, \mu_{\alpha_1} + 3\sigma_{\alpha_1}], e_s \in [\mu_s - 3\sigma_s, \mu_s + 3\sigma_s], \) and \(e_{\alpha_2} \in [\mu_{\alpha_2} - 3\sigma_{\alpha_2}, \mu_{\alpha_2} + 3\sigma_{\alpha_2}]. \)

Following the structure of the simulation chain defined in Fig. 1, Fig. 8 particularizes the relationship of the subsimulation programs for the six-link linkage design problem.

The weighted sum method is used in our study to model the multiple objectives in robust design. For the statistical approach, the robust optimization model is stated as

\[
\min F(x_1, x_2, x_3, x_4) = w_1 \sum_{i=1}^{s} |\mu_s (\phi) - S(\phi) |^2 + w_2 \sum_{i=1}^{s} |\sigma_s (\phi) |^2 / \sum_{i=1}^{s} \sigma_s^2(\phi)
\] (21)

subject to

\[
\mu_{\alpha_1} + k \sigma_{\alpha_1} \leq 55 \text{ deg}
\] (22)

\[
\mu_{\alpha_2} + k \sigma_{\alpha_2} \leq 26 \text{ deg}
\] (23)

where \(w_1 \) and \(w_2 \) are the weighting factors with \(w_1 + w_2 = 1, k \) is chosen to be 1, which indicates that with 84.13% probability the constraint will be satisfied under the assumption that \(\alpha_1 \) and \(\alpha_2 \) are normally distributed. Here \(\omega_\psi \) (obtained by \(w_1 = 1 \) and \(w_2 = 0 \)) and \(\omega_{\alpha_2} \) (obtained by \(w_1 = 0 \) and \(w_2 = 1 \)) are the ideal solutions used to normalize the two aspects in robust design, that is, optimizing the mean performance and minimizing performance deviations. Because the mechanism is desired to generate the output displacement following

Fig. 6 First four-bar linkage.

Fig. 7 Second four-bar linkage.

Fig. 8 Simulation model for six-link function-generator linkage.
Table 1 Comparisons of design results

<table>
<thead>
<tr>
<th>Method</th>
<th>x_1, mm</th>
<th>x_2, mm</th>
<th>x_3, mm</th>
<th>x_4, mm</th>
<th>α_1, deg</th>
<th>α_2, deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme condition approach</td>
<td>1.774</td>
<td>1.537</td>
<td>1.096</td>
<td>2.553</td>
<td>53.921</td>
<td>25.431</td>
</tr>
<tr>
<td>Statistical approach</td>
<td>1.775</td>
<td>1.542</td>
<td>1.096</td>
<td>2.575</td>
<td>53.950</td>
<td>25.199</td>
</tr>
<tr>
<td>Conventional optimization (without uncertainty considerations)</td>
<td>1.831</td>
<td>1.478</td>
<td>1.098</td>
<td>2.527</td>
<td>55.013</td>
<td>25.769</td>
</tr>
</tbody>
</table>

Fig. 9 Comparison of design results.

\[
\begin{align*}
\min F(x_1, x_2, x_3, x_4) &= w_1 \sum_{i=1}^{n} (\bar{S}(\phi_i) - S(\phi_i))^2 \\
&+ w_2 \sum_{i=1}^{n} \Delta S^2(\phi_i) \\
\text{subject to} & \quad \alpha_1 + \Delta \alpha_1 \leq 55 \text{deg} \\
& \quad \alpha_2 + \Delta \alpha_2 \leq 26 \text{deg}
\end{align*}
\]
(24)

where \bar{S}^* (obtained by $w_1 = 1$ and $w_2 = 0$) and ΔS^2 (obtained by $w_1 = 0$ and $w_2 = 1$) are the ideal solutions used to normalize the two aspects in robust design.

To show the effect of the proposed method, the mechanism design solution using RSMs with the consideration of model uncertainty is compared with the one using the RSMs but without the consideration of uncertainties (called conventional optimization without uncertainty considerations). The comparison is made for using $w_1 = w_2 = 0.5$ as the weighting factors in the robust design formulations. Note from Table 1 that all of the approaches generate feasible solutions where the maximum pressure angles are less than the required limits. The resulting displacement functions confirmed using the real analytical models at the design solution obtained from each of the three methods are shown in Fig. 9 for the range of input angles. Note that the functional curves generated by both the extreme condition approach and the statistical approach are closer to the desired location than the one based on the conventional optimization without uncertainty considerations. This indicates the benefit of using either the extreme condition approach or the statistical approach to the explicit modeling of the simulation errors.

The sum of the squares of the differences between the mean values of system outputs and the desired target values, that is,

\[
\sum_{i=1}^{n} (\mu_i(\phi) - S(\phi))^2
\]
(called the mean square error), and the sum of the variances of system output

\[
\sum_{i=1}^{n} \sigma_i^2(\phi)
\]
are evaluated using Monte Carlo simulations at the design solutions obtained from the extreme condition approach, the statistical approach (with $w_1 = w_2 = 0.5$), and the conventional optimization without uncertainty considerations. The comparisons are provided in Figs. 10 and 11.

As shown in Figs. 10 and 11, conventional optimization using RSMs but without uncertainty considerations has the minimum mean square error, but the maximum variance. The maximum variance is caused by the model uncertainties $e_{\mu}(\phi, x_1, x_2)$, $e_{\mu}(x_1, x_2)$, $e_{\mu}(\phi, x_3, x_4)$, $e_{\mu}(x_3, x_4)$, and $e_{\mu}(x_5, x_4)$, which are ignored in the formulation of conventional optimization. This has resulted in the worst performance in meeting the displacement function requirement (see Fig. 9). When the variance is reduced with either the extreme condition approach or the statistical approach, the uncertainty is mitigated to a certain extent and more reliable design results can be obtained. For the case where $w_1 = w_2 = 0.5$, the variance is reduced from 2.0134 to 1.3956 with the extreme condition approach and to 1.3956 with the statistical approach.

The tradeoff between the mean square error and the variance in robust optimization can be treated by adjusting the weighting factors while maintaining $w_1 + w_2 = 1$. The weight setting of $w_1 = 1$ and $w_2 = 0$ yields a conventional optimization that does not consider any

![Fig. 10 Confirmed mean square error.](image)

![Fig. 11 Confirmed variance.](image)
uncertainty and generates the lowest mean square error but max- imum square error of system outputs. For this particular problem, with w_j decreasing from 1 and w_j increasing from 0, the variance of system outputs decreases and the mean square error increases. The achieved displacement function is shifted to the required function more closely. However, the decrease of variance slows with a continued increase in w_j. As the mean square error increases accordingly, the proposed approaches with uncertainty considerations generate worse design results than the conventional optimization approach. This is especially true when w_j is near 0 and w_j is close to 1. As the value of design performance is influenced by both the mean location and its variance, how to deal with the tradeoff between the mean square error and the variance in the robust design model is an important task and needs careful exercising.

V. Conclusions
An integrated methodology for propagating and mitigating the ef- fect of uncertainties in simulation-based systems design is proposed in this paper. The extreme condition approach and the statistical approach are developed to propagate the effect of uncertainties and they are integrated with the proposed uncertainty mitigation strategy based on the principles of robust design. It is shown through the example that propagating and mitigating both external and in- ternal uncertainties involved in simulation-based design will enable designers to make reliable decisions. The proposed methodology is flexible and comprehensive with ample potential for its application in the area of multidisciplinary collaborative systems design. Even though a simplistic simulation chain model is used for illustration and the details are based on a simple first-order additive model for dealing with the internal uncertainty [see Eqs. (1) and (2)], the concepts and principles presented can be extended to more complicated systems.

The computational efficiency of the extreme condition approach and the statistical approach will vary depending on the size of the problem, for example, the number of design variables and the number of performance variables, the method for searching for extreme conditions, and data sample techniques when using the statistical approach. For complex engineering problems with black-box type of simulation programs, it is generally recommended to use the statistical approach over the extreme condition approach. Also the statistical approach provides more information on the effect of un- certainty across the whole range of performance, whereas the latter deals only with the conditions at extremes.

Note that the effectiveness of the proposed method will depend on the quality of error models. If the simulation models deviate greatly from the real models or the error models do not describe the real situations very well, the proposed integrated method may generate unsatisfactory design results. For the example problem discussed in Sec. IV, the quality of the error model can be further improved to obtain better design solutions.

How to deal with the tradeoff between the mean value and the vari- ance in robust design is another important task that requires careful exercising. When choosing the weighting factors, the combination effect of the mean location and the variance needs to be considered with the preference of designers and their attitude toward risk.

The future work is targeted toward developing computationally efficient methods for propagating and mitigating the effect of un- certainty in a coupled multidisciplinary design environment where the performance prediction of one discipline may be the inputs of an- other discipline and vice versa. To reduce the computational effort in propagating the effect of uncertainties by Monte Carlo simulations, methodologies for fast and direct probabilistic evaluations of sys- tem performance need to be introduced and developed. In terms of decision making under uncertainty, a more generic decision making model that is based on the concept of utility theory will be developed to accommodate designer's preference and risk attitude.

Acknowledgments
The support from National Science Foundation Design, Manu- facture, Industrial, Innovation Division 9896300 and the U.S. Tank Army Command is gratefully acknowledged.

References

A. Messac
Associate Editor