Perspectives for Parallel Computing in Multidisciplinary Design Optimization

Juan J. Alonso
Department of Aeronautics & Astronautics
Stanford University
jjalonso@stanford.edu

Panel on Ubiquitous and Massively Parallel Computing
10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
Albany, NY, August 30, 2004
Some Facts…

• The good:
 – Parallel computing has reached the commodity market
 – Both performance and price/performance continue to improve
 – Parallel software is establishing its

• The bad:
 – Platform stability or lack thereof
 – We are still programming with MPI!
 – Large scale parallel software integration needed for MDO is still in its infancy
• The “easy” way
 – Run the same program 100 times on 100 different computers
 – Embarrassingly parallel
 – Poor/good algorithm poor/good implementation analogy
 – Sometimes the way to go (GAs, Monte-Carlo, etc.)
 – What about memory scalability?
• Is this all there is to it? What are CS departments across the world working on?
Current Uses of Parallel Computing (2 of 3)

• The “hard” way
 – Single discipline analysis/design where runtime is a bottleneck
 – Amdahl’s law and scalability in the iso-efficiency metric
 – Some successes...MPI domain decomp.
 – Memory scalability for fluids and OpenMP for structures
 – Main failure is that the codes become “arthritic” even when properly developed/modularized
 – Overall optimism in this category
Current Uses of Parallel Computing (3 of 3)

• The “impossible” way - multi-code parallelism and scalability
 – Multi-code, multi-discipline parallelism for design applications
 – Grid / distributed / secure computing…does it work?
 – Practically uncharted territory
 – Some encouraging efforts…still very early on
 – Hierarchical methods for design
 – Large-scale integrated simulations
 – Parallel integration environments…python?
What Do We Need and Why?

• Fundamentally, we need to worry about the problem, not the accidents of how to go about solving it.
 – Understanding problems / physical mechanisms
 – Fixing problems / making designs better
 – Development of tools for “faster, better, cheaper”

• Requirements (in our research)
 – Highly scalable discipline analysis and design modules
 – Distributed analysis and design environments
 – Scalable multi-discipline analysis and design
 – SQA, modularity, reusability
 – Faster, easier to use computers
Will This Happen? When?

- Software...maybe
- Hardware...do not hold your breath!
- We are in the business of high-performance scientific computing ~1-3% of the computing market
- In software, our needs are aligned with the business enterprise...leverage integration tools
- In hardware, our needs are pretty specific...we'd better start thinking about running codes on graphic cards!
- You cannot wait until everything is fixed to jump
Suggestions, Recommendations, Questions

• If you are in the business of scientific computing
 – Learn MPI if you have not already (you are behind…)
 – OpenMP will help you for a while…
 – Pay attention to emerging
 • Research in decomposition methods in MDO
 • New parallel architectures (streaming supercomputing?)
 • New software development and integration paradigms
 (Python, Grid, integration frameworks, etc.)

• This is an exercise in managing complexity - one has to make the difficult look easy.
• One day we may all think in parallel…or not!
Pyre Distributed services

Workstation

Front end

Compute nodes

Launcher

Monitor

Journal

solid

fluid

Michael Aivazis, Caltech