

飞机空气动力特性分析

飞机总体设计框架

内容提要

- 有关空气动力特性的概念
- 空气动力学特性估算的方法
- 气动特性估算公式

空气动力特性

• 升力

■ 升力系数

$$C_L = \frac{L}{0.5 \rho v^2 S}$$

■ 升力线斜率

$$C_L = C_{L\alpha} \cdot \alpha$$

- 最大升力系数
 - ▶ 襟翼未打开: C_{L,max,clean}
 - ▶襟翼打开: C_{L,max,flap}

• 阻力

- ■阻力组成
 - ▶ 废阻:摩擦阻力;压差阻力;波阻;干扰阻力
 - ▶升致阻力
- ■阻力系数

$$C_D = \frac{D}{0.5\rho v^2 S}$$

■ 极曲线 (Drag Polar)

▶ 无弯度:
$$C_D = C_{D0} + KC_L^2$$

▶ 有弯度:
$$C_D = C_{D0} + K(C_L - C_{L,\min, \mathbb{H}_D})^2$$

空气动力学特性估算的方法

空气动力学理论	计算方法	在飞机设计中的应用
经典理论	简化解析公式 半经验公式 细长体理论、面积律	概念设计
无粘线性位流 理论	面元法 升力面理论	总体初步设计和气动分析, 机翼弯扭设计
无粘非线性位流理论	小扰动位流方程或 全位流方程的数值方法	中等强度激波的 跨音速流
粘流理论	附面层方程解 无粘/有粘交互计算	阻力计算,附面层修正,修 正无粘计算结果
无粘有旋流理论	欧拉方程数值方法	包括脱体涡的亚、跨、超音 速流场分析
粘性有旋流理论	N-S方程数值方法	包括分离流的复杂流场

气动特性估算公式

• 升力线斜率

■亚声速

$$C_{L\alpha} = \frac{2\pi\lambda}{2 + \sqrt{4 + \frac{\lambda^2 \beta^2}{\eta^2} (1 + \frac{\tan^2 \chi_{\max t}}{\beta^2})}} \left(\frac{S_{\text{max } t}}{S_{\text{ss}}}\right) F$$

其中: $\beta^2 = 1 - M^2$

 $\chi_{\text{max,t}}$ 为翼型最大厚度线的后掠角,

 λ 为展弦比,若有翼尖小翼,则: $\lambda_{\text{fg}} = 1.2\lambda$

$$\eta = \beta C_{l\alpha}$$
 $\sqrt{2\pi}$ 或 0.95 $C_{l\alpha}$ —翼型升力线斜率

F为机身升力影响系数: $F = 1.07(1 + d/l)^2$

其中d为机身当量直径,l为机翼展长。

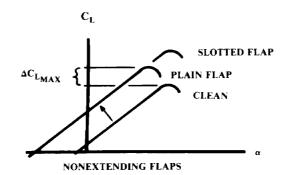
■ 超声速 (M > 1.2)

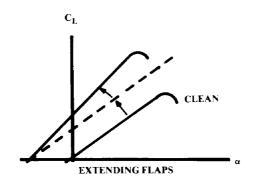
$$C_{L\alpha} = \frac{4}{\sqrt{M^2 - 1}} \qquad (超音速前缘)$$

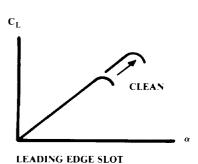
- 最大升力系数
 - 襟翼未打开
 - ▶大展弦比、中等后掠角和翼型前缘半径较大

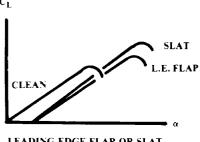
$$C_{L,\text{max}} = 0.9C_{l,\text{max}} \cdot \cos(\chi_{1/4})$$

▶小展弦比

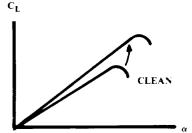

$$C_{L,\text{max}} = (C_{L,\text{max}})_{base} + \Delta C_{L,\text{max}}$$




■ 襟翼打开


- ▶ 襟翼类型与增升效果
- ▶计算公式

$$\Delta C_{L \max} = \Delta C_{l,\max} \left(\frac{S_{flapped}}{S} \right) \cdot \cos \chi_{\text{miss}}$$



LEADING EDGE FLAP OR SLAT

• 废阻系数计算

■ 等效蒙皮摩擦系数法

$$C_{D0} = C_{fe} \frac{S_{wet}}{S}$$

Swet是飞机湿润面积

 C_{fe} 是等效蒙皮摩擦系数:

对于Jet Transport: $C_{fe} = 0.0030$

对于Jet Fighter: $C_{fe} = 0.0035$

S是机翼面积

■ 部件叠加法(component build up method)

$$C_{D_0} = rac{\displaystyle\sum_{i=1}^{n}(C_{f,i}\cdot FF_i\cdot Q_i\cdot S_{wet,i})}{S} + C_{D,misc} + C_{D,\overline{m}, \Box}$$

其中: $C_{f,i}$ 是部件的表面摩擦系数

FF_i是部件形状的因子

Sweti是部件的湿润面积

 Q_{i} 是干扰因子

C_{D漏, 凸}是各种缝隙和凸物引起的阻力系数

C_{D.misc}是其他原因引起的阻力系数

1) $C_{F,i}$ 的计算

 $C_{f,i}$ 的大小取决于雷诺数、M、表面质量;层流还是紊流?

层流(laminar)
$$C_{f(la \min ar)} = 1.328 / \sqrt{Re_i}$$

紊流(turbulent)
$$C_{f(turbulent)} = 0.455 \cdot (\log_{10} \operatorname{Re}_{i})^{-2.58}$$

其中: Re;是各部件所对应的雷诺数

$$Re = \rho V L_i / \mu$$

其中: µ 是粘性系数, V是气流速度

L_i是所部件在气流方向上的平均长度

$$C_{f,i} = C_{f(la \min ar)} \cdot x\% + C_{f(turbulent)} \cdot (100 - x)\%$$

通常,典型翼面: X = 10-20% 层流层;

2) 部件形状因子FF;的确定

部件形状因子用来估算压差阻力对废阻的贡献。

对于短粗物体,压差阻力在废阻中是主要部分。

对于细长物体,摩擦阻力是主要部分。

对于机翼和尾翼:

$$FF_{i} = \left[1.0 + \frac{0.6}{(x/c)_{m}} \left(\frac{t}{c}\right) + 100 \cdot \left(\frac{t}{c}\right)^{4}\right] \cdot \left[1.34M^{0.18} \left(\cos \chi_{m}\right)^{0.28}\right]$$

对于机身和座舱盖:

$$FF_i = [1.0 + \frac{60.0}{(l/d)^3} + \frac{(l/d)}{400}]$$

对于短舱和其它平滑的外挂:

$$FF_i = 1.0 + \frac{0.35}{(l/d)}$$

其中: (x/c) "是翼形最大厚度的位置,

χ"是最大厚度线处的后掠角,

(t/c)是是翼形相对厚度,

(I/d) 是部件等效长径比,由下式确定:

$$(l/d) = l/\sqrt{(4\pi) \cdot A_{\text{max}}}$$

Amax是部件最大截面积

3) 干扰因子

短舱:

如果短舱、外挂直接安装在机身上或机翼上,Q = 1.5

如果短舱、外挂安装位置在机身直径之内,Q = 1.3

如果短舱、外挂安装位置在机身直径之外,Q = 1.0

机翼:

如果导弹安装在机翼翼尖上, Q = 1.25

对于上单翼、中单翼或者带整流的下单翼: Q = 1.0

对于没有整流蒙皮的下单翼: $Q = 1.1 \sim 1.4$

机身:

$$Q = 1.0$$

尾翼:

$$Q = 1.04 \sim 1.05$$

4)各种缝隙和凸物引起的阻力系数 $C_{D_{in}, D}$

对于Jet Transport: 增加2-5%

对于Jet Fighter: 增加2-5%

- 5) 其他原因引起的阻力系数C_{D,misc} 增加5-7%
- 6) 部件的湿润面积Swet, i的计算:

对于机翼和尾翼:

如果(t/c) < 0.05; $S_{\text{wet}} = 2.0003 \cdot S_{\text{外露}}$

如果(t/c) > 0.05; $S_{\text{wet}} = S_{\text{hg}} \cdot [1.977 + 0.52(t/c)]$

对于机身、短舱和外挂:

$$S_{\text{wet}} = K \cdot (A_{\text{m}} + A_{\text{m}})/2$$

其中: K = π (椭圆截面)

K = 4 (方形截面)

超声速飞行时:

$$C_{D_0} = \frac{\sum_{i=1}^{n} (C_{f,i} \cdot S_{wet,i})}{S} + C_{D,misc} + C_{D,\bar{m}} + C_{D,\bar{m}}$$

- $\succ C_{f,i}, C_{D_{i,i}, C_{D,misc}}$ 的计算同亚声速
- ➤ C_{D波}的计算

• 升致阻力系数计算

$$C_{D} = C_{D0} + KC_{L}^{2}$$

当升力是理想分布(椭圆分布)时: $k = \frac{1}{\pi \lambda}$

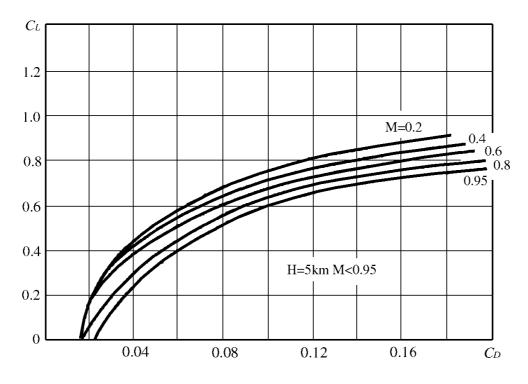
对于实际机翼:
$$k = \frac{1}{\pi \lambda \cdot e}$$

e: Oswald翼展效率因子(0.7~0.85)

亚声速:

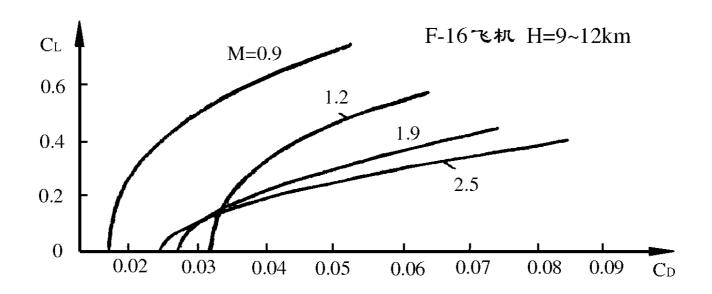
直机翼: $e = 1.78(1 - 0.045\lambda^{0.68}) - 0.64$

后掠翼: $e = 4.61(1 - 0.045\lambda^{0.68}) \cdot (\cos \chi_{\text{前缘}})^{0.15} - 3.1$


超声速:

$$k = \frac{\lambda (M^2 - 1)}{4\lambda \sqrt{M^2 - 1} - 2} \cdot \cos \chi_{\text{miss}}$$

• 极曲线 (Drag Polar)


$$C_D = C_{D0} + KC_L^2$$

米格-19飞机的极曲线

F-16飞机的极曲线

